Extensions of number fields defined by cohomology groups

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

COHOMOLOGY OF NUMBER FIELDS AND ANALYTIC PRO-p-GROUPS

In this work, we are interested in the tame version of the Fontaine–Mazur conjecture. By viewing the pro-p-proup GS as a quotient of a Galois extension ramified at p and S, we obtain a connection between the conjecture studied here and a question of Galois structure. Moreover, following a recent work of A. Schmidt, we give some evidence of links between this conjecture, the étale cohomology and...

متن کامل

Brauer Groups of Genus Zero Extensions of Number Fields

We determine the isomorphism class of the Brauer groups of certain nonrational genus zero extensions of number fields. In particular, for all genus zero extensions E of the rational numbers Q that are split by Q( √ 2), Br(E) ∼= Br(Q(t)).

متن کامل

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

SOME NOTES ON COHOMOLOGY OF NUMBER FIELDS AND ANALYTIC PRO-p-GROUPS by

In this paper, we are interested in the tame version of the Fontaine-Mazur conjecture. After recalling the role of étale cohomology in the context of this conjecture, we establish a relationship between it and the computation of the cohomological dimension of the pro-p-groups GS that appear. We then look at this conjecture by viewing the pro-pproup GS as a quotient of a Galois group with rami c...

متن کامل

Unramified Quaternion Extensions of Quadratic Number Fields

The first mathematician who studied quaternion extensions (H8-extensions for short) was Dedekind [6]; he gave Q( √ (2 + √ 2)(3 + √ 6) ) as an example. The question whether given quadratic or biquadratic number fields can be embedded in a quaternion extension was extensively studied by Rosenblüth [32], Reichardt [31], Witt [36], and Damey and Martinet [5]; see Ledet [19] and the surveys [15] and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1983

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000020663